Current Issues of Pharmacy and Medical Sciences

Genotoxicity of chromium (III) and cobalt (II) and interactions between them

Curr Issues Pharm Med Sci., Vol. 34, No. 3, 142-148

Katarzyna Czarnek1, Andrzej K. Siwicki2

1 Institute of Health Sciences, Faculty of Science and Health Sciences in Lublin, The John Paul II Catholic University of Lublin, Poland 
2 Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland 


 DOI_disc_logo 10.2478/cipms-2021-0021

​© 2021 Author(s). This is an open access article distributed under the Creative Commons Attribution-NonComercial-No Derivs licence (http://creativecommons.org/licenses/by-nc-nd/3.0/)

Abstract

Introduction. Chromium and cobalt are essential trace elements that are required only in a small amount, otherwise their excess can cause toxic effects.
Aim. The aim of this study was to determine the effects of chromium (III) and cobalt (II) and their combinations on genotoxicity in human fibroblasts cells (BJ).
Material and methods. In this work, comet and micronucleus assays were used. The BJ cells were exposed to chromium chloride and cobalt chloride at concentration ranges from 100 to 1400 µM. Mixtures of these elements were prepared so as to examine interactions between them.
Results. The present study shows the genotoxic effects of chromium (III) and cobalt (II) and their mixtures on BJ cells. In the comet assay, no comets were observed at the lowest concentrations; in the higher, a significant increase in their percentage was observed. In the other assay (formation of micronuclei), a statistically significant increase in the number of cells with micronuclei was observed in the BJ cells spiked with cobalt chloride and chromium chloride. In the case of simultaneous incubation of chromium chloride at 200 µM and cobalt chloride at 1000 µM in the BJ line, antagonism was observed. However, the interaction of chromium chloride at the 1000 µM and cobalt chloride at 200 µM leads to synergism between the studied elements.
Conclusions. Cobalt (II) and chromium (III) show genotoxic properties, they induce breaks in double and single-stranded DNA and they cause formation of AP-sites that do not have purine or pyrimidine bases. 

 

Full Text

Keywords

cobalt, chromium, genotoxicity, interactions. 

Calendar

October 2024

Mon Tue Wed Thu Fri Sat Sun
  01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31