Current Issues of Pharmacy and Medical Sciences

Role of stable hydrogen isotope variations in water for drug dissolution managing

Curr Issues Pharm Med Sci., Vol. 33, No. 2, 94-101

Elena V. Uspenskaya1*, Tatyana V. Pleteneva1, Anton V. Syroeshkin1,
Ilaha V. Kazimova1, Tatyana E. Elizarova2, Artem I. Odnovorov1

1 RUDN University, Department of Pharmaceutical and Toxicological Chemistry, Medical Institute of Peoples’ Friendship University of Russia, Moscow Russia
2 OOO “Farmanaliz” Control Analytical Laboratory, Moscow, Russia


DOI_disc_logo 10.2478/cipms-2020-0017

© 2020 Author(s). This is an open access article distributed under the Creative Commons Attribution-NonComercial-No Derivs licence (http://creativecommons.org/licenses/by-nc-nd/3.0/)

Abstract

In the present work, we provide the results of defining by utilizing Laser diffraction spectroscopy, the kinetic isotopic effect of solvent and constant of dissolution rate κ, s-1 of аn active pharmaceutical ingredient (API) in water with a different content of a stable 12H isotope on the basis of the laws of first-order kinetics. This approach is based on the analysis of the light scattering profile that occurs when the particles of the dispersion phase in the aquatic environment are covered with a collimated laser beam. For the first time, the dependence of the rate of dissolution is demonstrated not only on the properties of the pharmaceutical substance itself (water solubility mg/ml, octanol–water partition coefficient log P oct/water, topological polar surface area, Abraham solvation parameters, the lattice type), but also on the properties of the solvent, depending on the content of stable hydrogen isotope. We show that the rate constant of dissolution of a sparingly hydrophobic substance moxifloxacin hydrochloride (MF · HCl) in the Mili-Q water is: k=1.20±0.14∙10-2 s-1 at 293.15 K, while in deuterium depleted water, it is k=4.24±0.4∙10-2 s-1. Consequently, we have established the development of the normal kinetic isotopic effect (kH/kD >1) of the solvent. This effect can be explained both by the positions of the difference in the vibrational energy of zero levels in the initial and transition states, and from the position of water clusters giving volumetric effects of salvation, depending on the ratio D/H. The study of kinetic isotopic effects is a method that gives an indication of the mechanism of reactions and the nature of the transition state. The effect of increasing the dissolution of the API, as a function of the D/H ratio, we have discovered, can be used in the chemical and pharmaceutical industries in the study of API properties and in the drug production through improvement in soluble and pharmacokinetic characteristics.

 

Full Text

Keywords

kinetics dissolving, laser diffraction spectroscopy, deuterium depleted water (ddw), kinetic isotope effect (KIEs), water clusters, antibacterial, neuroprotective drugs.

Calendar

October 2024

Mon Tue Wed Thu Fri Sat Sun
  01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31